

ReLive Everyday, LLC

256 N. Lincoln Ave, STE 7 Lebanon, PA 17046

Lic.#CBD

Certificate of Analysis Powered by Confident Cannabis

Sample: 2208DBL0112.4336 METRC Sample:

Lot #: 221808

Strain: N/A

Ordered: 08/23/2022; Sampled: 08/24/2022; Completed: 09/01/2022

Bedtime Gummies - 10mg

Ingestible, Soft Chew, Other

Microbials

Mycotoxins

Heavy Metals

Foreign Matter

Solvents

Terpenes

Analyzed by 300.13 GC/FID and GC/MS

<LOQ **Total Terpenes**

Compound	LOQ	Mass	Mass
	mg/unit	mg/unit	mg/g
α-Bisabolol	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
α-Humulene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
α-Pinene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
α-Terpinene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
β-Caryophyllene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
β-Myrcene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
β-Pinene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Camphene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Caryophyllene Oxide	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
cis-Nerolidol	0.255	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
cis-Ocimene	0.255	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
δ-3-Carene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
δ-Limonene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Eucalyptol	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
y-Terpinene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Geraniol	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Guaiol	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Isopulegol	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Linalool	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
p-Cymene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Terpinolene	0.392	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
trans-Nerolidol	0.137	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
trans-Ocimene	0.137	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>

Cannabinoid Relative Concentration

Analyzed by 300.18 UHPLC/PDA

			Pa	ass
THC	11.307 mg/ CBD	unit	pH: Aw:	NT 0.62
				Tested geneity
LOQ	Mass	Mass	Relative Cor	ncentration
mg/unit	mg/unit	mg/g		M
				-
0.085				
0.085	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
0.085	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
0.085	1.329	0.486		
0.085	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
	THC To LOQ mg/unit 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085	THC CBD 12.636 mg/ Total Cannab LOQ Mass mg/unit mg/unit 0.085 <loq 0.085="" <loq="" <loq<="" td=""><td>12.636 mg/unit Total Cannabinoids LOQ Mass Mass mg/unit mg/unit mg/g 0.085 <loq 0.085="" <loq="" <loq<="" td=""><td>11.307 mg/unit THC CBD Aw: 12.636 mg/unit Total Cannabinoids LOQ Mass Mass Mass Melative Cor mg/unit mg/unit mg/unit mg/unit 0.085 <loq 0.085="" <lo="" <loq=""> 0.09 0.085 <loq 0.085="" <lo="" <loq=""> 0.09 0.085 <lo> 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0</lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></loq></loq></td></loq></td></loq>	12.636 mg/unit Total Cannabinoids LOQ Mass Mass mg/unit mg/unit mg/g 0.085 <loq 0.085="" <loq="" <loq<="" td=""><td>11.307 mg/unit THC CBD Aw: 12.636 mg/unit Total Cannabinoids LOQ Mass Mass Mass Melative Cor mg/unit mg/unit mg/unit mg/unit 0.085 <loq 0.085="" <lo="" <loq=""> 0.09 0.085 <loq 0.085="" <lo="" <loq=""> 0.09 0.085 <lo> 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0</lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></loq></loq></td></loq>	11.307 mg/unit THC CBD Aw: 12.636 mg/unit Total Cannabinoids LOQ Mass Mass Mass Melative Cor mg/unit mg/unit mg/unit mg/unit 0.085 <loq 0.085="" <lo="" <loq=""> 0.09 0.085 <loq 0.085="" <lo="" <loq=""> 0.09 0.085 <lo> 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0</lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></lo></loq></loq>

1 Unit = Bedtime Gummies - 10mg, 2.73343g

Total THC = 0.877 x THC-A + Δ9-THC + Δ8-THC; Total CBD = CBDa * 0.877 + CBD

Laboratory Director

DB Labs will not discuss any part of this study with personnel other than those authorized by the client, this report is considered highly confidential and the sole property of the client. This Certificate shall not be reproduced except in full, without the written approval of DB Labs. The results described in this report only apply to the samples analyzed. Edibles are picked up prior to final packaging unless otherwise stated. The reported result is based on a sample weight with the applicable moisture content for that sample. LOQ=Limit of Quantitation. Pesticide LOQ=Instrument Limit of Quantitation, NA=Not Applicable, ND=Not Detected, NR=Not Reported, NT=Not Tested, TNC=Too Numerous to Count (microbial), PGR=Plant Growth Regulator. Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. DB Labs makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. State determined action levels have variable thresholds based on uncertainty of measurement (UM) for the analytic. The "Decision Rule" for the pass/fail does not include the UM. The UM associated with the result reported in this certificate is available upon request. This product has been tested by DB Labs, LLC (MME# 61887736101164525768) using a reality to reprove and voiled testing methodologies or required by Navada Peculations. quality system and valid testing methodologies as required by Nevada Regulations

ReLive Everyday, LLC

256 N. Lincoln Ave, STE 7 Lebanon, PA 17046

Lic.#CBD

Certificate of Analysis Powered by Confident Cannabis

Sample: 2208DBL0112.4336

METRC Sample: Lot #: 221808

Strain: N/A

Ordered: 08/23/2022; Sampled: 08/24/2022; Completed: 09/01/2022

Bedtime Gummies - 10mg

Ingestible, Soft Chew, Other

Pesticides Analyzed by 300.9 LC/MS/MS and GC/M:	S/MS		Pass
Compound	LOO	Limit	Status
Compound	PPB	PPB	Otatas
Abamectin	10	0	Pass
Acequinocyl	10	4000	Pass
Bifenazate	10	4000	Pass
Bifenthrin	10	400	Pass
Cyfluthrin	10	2000	Pass
Cypermethrin	10	0	Pass
Daminozide	10	0	Pass
Dimethomorph	10	2000	Pass
Etoxazole	10	400	Pass
Fenhexamid	10	1000	Pass
Flonicamid	10	1000	Pass
Fludioxonil	10	500	Pass
	10	500	Pass
Imidacloprid Myclobutanil	10	400	Pass
Paclobutrazol	10	400	Pass
Piperonyl Butoxide	10	3000	Pass
Pyrethrins	10	2000	Pass
Ouintozene	10	800	Pass
	10	1000	Pass
Spinetoram	10	1000	Pass
Spinosad	10	1000	
Spirotetramat Thiamethoxam	10	400	Pass
			Pass
Trifloxystrobin	10	1000	Pass
Plant Growth Regulators	10	50	Pass

Microbials Analyzed by 300.1 Plating/QPCR			Pass
Quantitative Analysis	LOQ	Limit	Status
	CFU/g	CFU/g	
Aerobic Bacteria	900	100000	Pas:
Bile-Tolerant Gram-Negative Bacteria	90	1000	Pas
Qualitative Analysis			Status
E. Coli	7		Pass
Salmonella			Pass

Mycotoxins Analyzed by 300.2 Elisa			Pass
Mycotoxin	LOQ	Limit	Status
	PPB	PPB	
Aflatoxins	4.0	20.0	Pass
Ochratoxin A	2.0	20.0	Pass

Heavy Meta Analyzed by 300.8 ICF			Pass
Element	LOQ	Limit	Status
5.0	PPB	PPB	
Arsenic	55	2000	Pass
Cadmium	55	820	Pass
Lead	55	1200	Pass
Mercury	55	400	Pass

Residual Solv Analyzed by 300.13 GC			Pass
Compound	LOQ	Limit	Status
	PPM	PPM	
Butanes	92	500	Pass
Ethanol	92	1000	Pas
Heptanes	92	500	Pas
Propane	92	500	Pass

